

NOVA Series SD590/560 Instruction Manual

DIGITAL INDICATOR

Contents

1.	Safety Guide	3
2.	Control Keys and Display	5
3.	Parameter Map	6
4.	Flow of Operating Display	7
5.	Setting Up Parameter in each Group	8
	5.1 Input Group(G.IN)	8
	5.2 Control Group(G.CTL)	12
	5.3 Alarm Group(G.ALM)	14
	5.4 Retransmission Group(G.RET)	17
	5.5 Communication Group(G.COM)	18
6.	Display Error and Correction	20
7.	Installation	21
	7.1 Dimension and Panel Cutout	21
	7.2 How to install Mount	23
	7.3 Power Cable Specification	24
	7.4 Terminal Specification	24
	7.5 Terminal Arrangement and External Wiring	25

7.6 Grounding and Power Cable Connection	27
7.7 Analog Input Connection	27
7.8 Retransmission Output Connection(RET)	28
7.9 Loop Power Supply Output Connection(LPS)	28
7.10 External Contact Output Connection(RELAY)	28
7.11 External Contact Input Connection(DI)	29
7.12 Use an Auxiliary Relay	29
7.13 Communication Wiring(RS485)	30
Attach. Table of D-Register	31
Table 1 : Type of Input Sensor	8
Table 2 : DI Operation	12
Table 3 : Type of Alarm	15
Fig 1 : Example of Piece Bias	10
Fig 2 : Example of Piece Bias Formula	10
Fig 3: Alarm Operation	15

1. Safety Guide

The following safety symbols are used in this manual

(A) If this symbol is marked on the product, the operator must investigate the explanation given in this manual to protect injury or death to personnel or damage to instrument.

CAUTION

(1) For Production : it should be marked when operator must refer the explanation in the manual to avoid loss of life or damage to instrument.
 (2) For instrument.

(2) For Instruction Manual : it marks to avoid operator's loss of life and injury that may result comes from Electric Shock.

(B) Functional earth terminal

Equipment protected by double or reinforced insulation

It marks the terminal must be connected to Ground prior to operating the equipment.

(C) It marks additional Information on the operation and features of the product.

(D) It marks for further information on the current topic and pages

Precautions on this instruction Manual

- (1) This Manual should be passed on the end User and keep a suitable place for operator to study and check the function of the product.
- (2) Operator should carefully study, understand how to operate this product before
- (3) This manual is describing the functions of the product. We, Samwontech, does not warrant that the functions will suit a particular purpose.
- (4) Under absolutely no circumstance may the contents of this manual in part or in whole be transcribed or copied without permission.
- (5) All contents of this manual has been made to ensure accuracy in the preparation, However, should any errors or omissions come to the attention of the user, feel free to contact our sales representatives or our sales office

Regarding Safety and Unauthorized Modification

- (1) In order to protect this product and the system controlled by it against damage and ensure its safe use, make certain that all of the safety instructions and precautions in this manual are strictly adhered to.
- (2) We, Samwontech, are not guarantee safety if the products are not handled according to this instruction manuals
- (3) If separate protection or safety circuits are to be installed for this product or the system which is controlled by this product, ensure that such circuits are installed external to the product.
- (4) Don't try to make modifications or additions internal to the product. It may becomes electric shock, burn or out of order.
- (5) In case of replacement parts or consumables of the product, must call to our sales office.(6) Protect this product from moisture. It may becomes out of order.
- (7) Protect any kind of shock and vibration to the product. It may becomes product defects and out of order

Regarding an exemption from responsibility

- (1) Samwontech co. Ltd does not make any warranties regarding the product except Warranty conditions those mentioned in this manual.
- (2) We assumes no liability to any party for any loss or damage, direct or indirect, caused by the use or any unpredictable defect of the product.

Regarding the production Quality Assurance.

- (1) The guaranteed period of the production quality assurance is (1) one year after end user buy it and it will be free to fix defected product under regular usage described by this manual.
- (2) It will be charged to fix defected product after warranty period. This charge will announced by our actual cost to be calculated during the fixing time.
- (3) It will be charging even if within warranty period as following events.
 - (3.1) Defect by operator and user's default.(forget password, production initialize)
 - (3.2) Natural disaster.(fire, water flow etc)
 - (3.3) Additional shift after 1st installed.
 - (3.4) Improperly repaired, or altered, modified in anyway.
 - (3.5) Power failure in unstable power condition.
- (4) Feel free to contact our sales office whenever it need to make A/S.

Environmental precautions for installation.

- (1) Be sure to operate the controller installed on a panel to prevent electric shock.
- (2) To install the controller, do select a location where;
 - No one may accidentally touch terminal.
 - Mechanical vibrations are minimal.
 - No corrosive gas is prevent.
 - Temperature fluctuation is minimal.
 - Temperature can be maintained. (50 ℃ below / 10 ℃ over)
 - No direct heat radiation is present.
 - No magnetic disturbances are caused
 - No water is splashed.
 - No flammable materials are around.
 - No wind blows. (prevent Dust with salt)
 - No ultraviolet rays are present.
 - Pollution Degree 2
 - Installation Category II
 - Do not block openings
 - If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
 - A switch or circuit-breaker acting as the disconnect device shall be included in the application or the building installation

Precautions of Controller Mounting.

- Keep the input circuit wiring as far as possible away from power and ground circuit.
- Keep the controllers in 10° C ~ 50° C / 20 % ~ 90 % RH,
 - Warming up needed to use controller when temperature is below 10°C in advance.
- Do not mount front panel facing downward.
- To prevent electric shock, be sure to turn off and the source circuit breaker before wiring.
- The power consumptions are 100-240VAC, 50/60Hz, 10VAmax and operate without power switching in advance.
- No work in wet hands (it caused electric shock)
- Follow operation by precaution in the manual to avoid fire, electric shock, loss of life etc.
- Requested to follow mounting and operation methods just indicated in this manual.
- Refer the way of grounding connection, however, keep away for grounding to Gas pipe, water pipe, lightening rod etc.
- Be sure not to power connection before finishing of wiring between each contact point.
- Not close and wrapping the heat hole in back case of controller.

2. Control Keys and Display

\odot Control Keys

KEY	Contents
SET/ENT (ENTER)	 Used in switching between parameters or registering parameter settings. Pressing SET/ENT Key at least 3 sec. switches between an operating display and an operating parameter setting display
▲/▼ (UP/DOWN)	 Used to change the value of parameters. Used to move between GROUP and change SP value.
	- Used when shifting position to modify value.

● LED Display

LED	Contents
ALM1,2,3	- Lights on when Alarm occur

3. Parameter Map

4. Flow of Operating Display

(*note 1: Initial display after power on.: First operation display) (*note 2: When User's Screen is registered.) Pre-setting PV,LO in DI option.

(*note 3: When User's Screen is registered.) Pre-setting PV,HI in DI option.

5. Setting Up Parameter in each Group.

5.1 Input Group(G.IN)

Change setting up parameters should be done for the first stage because it is suspended initializing parameters in other group around.

CAUTION

The parameter to select type of temperature sensor and its initial setting is type TC,K1.

Refer to following 'Table of Input Sensor' and select No shown in Table 1.

Table 1: Type of Input Sensor				<i>≫disp</i>	lay range: -5% ·	~ +105%
	No.	TYPE	Temp.Range(℃)	Temp.Range(°F)	Group	DISP
	1	K1	-200~1370	-300~2500		TC.K1
	2	K2	-199.9~999.9	0~2300		TC.K2
	3	J	-199.9~999.9	-300~2300		TC.J
ĺ	4	E	-199.9~999.9	-300~1800		TC.E
ĺ	5	Т	-199.9~400.0	-300~750		TC.T
	6	R	0~1700	32~3100		TC.R
	7	В	0~1800	32~3300	T/C	TC.B
	8	S	0~1700	32~3100	1/0	TC.S
	9	L	-199.9~900.0	-300~1600		TC.L
	10	Ν	-200~1300	-300~2400	-	TC.N
	11	U	-199.9~400.0	-300~750		TC.U
	12	W	0~2300	32~4200		TC.W
	13	Platinel II	0~1390	32~2500		TC.PL
	14	С	0~2320	32~4200		TC.C
	15	PtA	-199.9~850.0	-300~1560		PTA
	16	PtB	-199.9~500.0	-199.9~999.9		PTB
	17	PtC	-19.99~99.99	-4.0~212.0	RTD	PTC
	18	JPtA	-199.9~500.0	-199.9~999.9		JPTA
	19	JPtB	-150.0~150.0	-199.9~300.0		JPTB
	20	0.4~2.0V	0.400~	2.000V		2V
	21	$1 \sim 5V$	1~	5V	DCV	5V
	22	0~10V	0~	10V		10V
	23	-10~20mV	-10~	20mV	m\/	20M
	24	0~100mV	0~10	00mV	IIIV	100M

5th Edition of NOVA IM : SEP 2005

	The parameter to select type of temperature unit for °C or °F. Its initial selection is °C type.
	Refer to Table 1 when change temperature unit.
	The parameter to set High-Limit for input temperature measuring range.
	The parameter to set Low-Limit for input temperature measuring range.
(PV I ndP	The parameter to set the position of decimal value in case that sensor type is mV or V. The position if decimal value can change 0 ~ 3. its initial set value is '1'.
PVInSH	The parameter to set High-Limit of input measuring scale in case that sensor type is mV or V. its initial value of 'In.SH' is '100.0'
PVInSL	The parameter to set Low-Limit of input measuring scale in case that sensor type is mV or V. its initial value of 'In.SL' is '0.0'
	The parameter to set PV filter for stabilizing from electromagnetic noise etc. it may effect violation of PV value. Its initial value of 'In. FL' is OFF and can change 1 sec to 120 sec.
	The parameter to set for decreasing when PV is unstable due to senstive sensor response under normal control.
PV bSL	The parameter to set a direction of PV operation when sensor open. When set value of BSL is 'UP', PV operation is for High-Limit of Input Sensor. When set value of BSL is 'DOWN', PV operation is for Low-Limit of Input Sensor. Its initial setting is 'UP' (* in case of mV, V input, initialize 'OFF' and No checking Sensor-Open in 10V, 20mV, 100mV
PV_rSL	The parameter to set whether using RJC or not in case that input sensor is thermocouple. Its initial setting of 'rSL' is 'ON'
PV <u>bSP i</u>	The parameter to set range of Bias in PV value enabling Bias process. Bias range can set Max 4. for further information, refer to Fig 1. and Fig 2.
PV b50	The parameter to set Bias value of PV in Bias range. For further information, refer to Fig 1. and Fig 2.
PV b54	

(Fig 1 : Example of Piece Bias)

Ex) There are +2°C in 25°C, -1°C in 50°C, +3°C in 75°C as temperature deviation in measuring actual temperature in range from 0°C to 100°C, and try to take a Piece Bias, each Bias set value are shown as belows(RL=0°C, BSP1=25°C, BSP2=50°C, BSP3=75°C, RH=100°C)

BS0=0°C, BS1=-2°C, BS2=+1°C, BS3=-3°C, BS4=0°C

(Fig 2 : Example of Piece Bias Formula)

Temperature Bias Value = Temperature after Bias - Actual Temperature Temperature in 600 °C(P) after Bias

P = 600 + (600-BPS2) X - BS3 - BS2 + BS2 - BSP3 - BSP2

Sym	Parameter	Setting Range	Unit	Initial	Remark
IN-T	Input Type	Refer to Table 1 Type of Input Sensor	ABS	TC.K1	All time indicate
IN-U	Display Unit	°C / °F	ABS	Ĉ	T/C, RTD
IN.RH	Max. Value of Measurement Range	Within DEF. Range refer to Table 1	EU	1370	All time indicate
IN.RL	Min. Value of Measurement Range	however, INRH > INRL	EU	-200	All time indicate
IN.DP	Decimal Point Position	0~3	ABS	1	mV, V
IN.SH	Max Value of Input Scale	Within -1999~9999 however, INSH > INSL		100.0	mV, V
IN.SL	Min Value of Input Scale	The Decimal Point Position is relay on the value of IN.DP	ADS	0.0	mV, V
IN.FL	PV Filter	OFF, 1~120	sec	OFF	All time indicate
D.FL	Display Filter	OFF, 1~120	sec	OFF	All time indicate
BSL	BOUT SEL (note1)	OFF, UP, DOWN	ABS	UP (DCV=OFF)	All time indicate
RSL	RJC SEL	ON, OFF	ABS	ON	T/C
BSP1	Reference Bias Point1	EU(0.0~100.0%), RL≤BSP1≤BSP2≤BSP3≤RH	EU	EU(100.0%)	All time indicate
BSP2	Reference Bias Point2	EU(0.0~100.0%), RL≤BSP1≤BSP2≤BSP3≤RH	EU	EU(100.0%)	All time indicate
BSP3	Reference Bias Point3	EU(0.0~100.0%), RL≤BSP1≤BSP2≤BSP3≤RH	EU	EU(100.0%)	All time indicate
BS0	Bias Value for RL Point	EUS(-100.0~100.0%)	EUS	0	All time indicate
BS1	Bias Value for BSP1 Point	EUS(-100.0~100.0%)	EUS	0	All time indicate
BS2	Bias Value for BSP2 Point	EUS(-100.0~100.0%)	EUS	0	All time indicate
BS3	Bias Value for BSP3 Point	EUS(-100.0~100.0%)	EUS	0	All time indicate
BS4	Bias Value for RH Point	EUS(-100.0~100.0%)	EUS	0	All time indicate

(note 1) : S.OPN(Sensor-Open)=BOUT(Burn-Out)

5.2 Control Group(G.CTL)

(Table 2 : DI Operation)

DI.SL	DI1	DI2	Operation		
OFF	_	-	Start MIN,MAX		
1	off	_	Reset MIN,MAX		
I	on	-	Start MIN,MAX		
	off	-	Reset MIN		
2	on	-	Start MIN		
2	_	off	Reset MAX		
	-	on	Start MAX		

- If Forget the PASSWORD, Not available for operator's maintenance.

Need to return the controller for our service center and sales office.

The parameter to initialize the controller. It is initialing when 'INIT' sets 'ON' (However, not allow communication for initializing)

CAUTION

It will be initialized all parameters of the controller when 'INIT' parameter sets. Be sure to avoid any kind of inconvenience.

Sym	Parameter	Setting Range	Unit	Initial	Remark
PV.LO	PV Low.Value	EU(-5.0~105.0%) : Read Only	EU	EU(100.0%)	All time indicate
PV.HI	PV High.Value	EU(-5.0~105.0%) : Read Only	EU	EU(0.0%)	All time indicate
US1	User Screen	OFF, D-Register No (1~1299)	ABS	OFF	All time indicate
US2	User Screen	OFF, D-Register No (1~1299)	ABS	OFF	All time indicate
LOCK	Key Lock	OFF, ON (No Editing)	ABS	OFF	All time indicate
DI.SL	DI Selection	OFF, 1, 2 (Table 2 : DI Operation)	ABS	OFF	DI Option
DSP.H	Display High Limit	EU(-5.0~105.0%) : However, DSP.L <dsp.h< td=""><td>EU</td><td>EU(105.0%)</td><td>All time indicate</td></dsp.h<>	EU	EU(105.0%)	All time indicate
DSP.L	Display Low Limit	EU(-5.0~105.0%) : However, DSP.L <dsp.h< td=""><td>EU</td><td>EU(-5.0%)</td><td>All time indicate</td></dsp.h<>	EU	EU(-5.0%)	All time indicate
U.PWD	User Password	0~9999	ABS	0	All time indicate
INIT	Parameter Initialization	OFF, ON	ABS	OFF	All time indicate

5.3 Alarm Group(G.ALM)

(Table 3 : Type of Alarm)

		Output Direct		Standby		Display Data
110.	Alam Type	For	Rev	On	Off	Display Dala
1	Absolute-Value Upper-Limit Alarm	0		0		AH.F
2	Absolute-Value Lower-Limit Alarm	0		0		AL.F
3	Upper-Limit Alarm of Deviation	0		0		DH.F
4	Lower-Limit Alarm of Deviation	0		0		DL.F
5	Upper-Limit Alarm of Deviation		0	0		DH.R
6	Lower-Limit Alarm of Deviation		0	0		DL.R
7	Upper-and-Lower-Limit alarm of Deviation	0		0		DO.F
8	Upper-and-Lower-Limit Range of Deviation	0		0		DI.F
9	Absolute-Value Upper Limit Alarm		0	0		AH.R
10	Absolute-Value Upper Limit Alarm		0	0		AL.R
11	Absolute-Value Upper-Limit Alarm with Standby	0			0	AH.FS
12	Absolute-Value Lower-Limit Alarm with Standby	0			0	AL.FS
13	Upper-Limit Alarm of Deviation with Standby	0			0	DH.FS
14	Lower-Limit Alarm of Deviation with Standby	0			0	DL.FS
15	Lower-Limit Alarm of Deviation with Standby		0		0	DH.RS
16	Upper-Limit Alarm of Deviation with Standby		0		0	DL.RS
17	Upper-and-Lower-Limit Alarm of Deviation with Standby	0			0	DO.FS
18	Upper-and-Lower-Limit Range Alarm of Deviation with Standby	0			0	DI.FS
19	Absolute-Value Upper-Limit Alarm with Standby		0		0	AH.RS
20	Absolute-Value Lower-Limit Alarm with Standby		0		0	AL.RS

(Fig 3 : Alarm Operation)

Sym	Parameter	Setting Range	Unit	Initial	Remark
ALT1	Alarm Type 1	Refer to (Table 3 : Type of Alarm)	ABS	AH.F	All time indicate
AL-1	Set value of ALT1	EU(-100.0~100.0%)	EU	EU (100.0%)	All time indicate
A1DB	Alarm Type1 DB	EUS(0.0~100.0%)	EUS	EUS (0.5%)	All time indicate
A1DY	Delay Time of Alarm 1	0.00~99.59	MM.SS	0.00	All time indicate
ALT2	Alarm Type 2	Refer to (Table 3 : Type of Alarm)	ABS	AH.F	All time indicate
AL-2	Set value of ALT2	EU(-100.0~100.0%)	EU	EU (100.0%)	All time indicate
A2DB	Alarm Type2 DB	EUS(0.0~100.0%)	EUS	EUS (0.5%)	All time indicate
A2DY	Delay Time of Alarm 2	0.00~99.59	MM.SS	0.00	All time indicate
ALT3	Alarm Type 3	Refer to (Table 3 : Type of Alarm)	ABS	AH.F	All time indicate
AL-3	Set value of ALT3	EU(-100.0~100.0%)	EU	EU (100.0%)	All time indicate
A3DB	Alarm Type3 DB	EUS(0.0~100.0%)	EUS	EUS (0.5%)	All time indicate
A3DY	Delay Time of Alarm 3	0.00~99.59	MM.SS	0.00	All time indicate

5.4 Retransmission Group(G.RET)

* Retransmission Output

Sym	Parameter	Setting Range	Unit	Initial	Remark
RET	Select RET	LPS, PV	ABS	PV	All time indicate
RETH	High-Limit value of Retransmission	T/C, RTD : INRH \sim INRL	EU	INRH	All time
RETL	Low-Limit value of Retransmission	mv, v : INSH ~ INSL However, RETH > RETL	EU	INRL	indicate

5.5 Communication Group(G.COM)

PV	Press SET/ENT Key to select Communication Group after press ▲ or ▼ Key in Menu display.
PV LonP	The parameter to set communication Protocol.
BURG	The parameter to set communication speed (BAUD RATE). The setting range of BAUD RATE is 600 ~ 19200 bys. Its initial setting is '9600'bps.
PV P-LY	The parameter to set Communication Parity. The setting range are 'None', 'Even', 'ODD'. Its initial setting is 'None'.
PV SBI E	The parameter to set Communication Stop Bit. The setting range is '1' or '2'. Its initial setting is '1'.
PV dLEn	The parameter to set Communication Data Length. The setting range is '7' or '8'. Its initial setting is '8'. Parameter 'DLEN' is not display when 'COM.P' sets 'MODBUS ASCII' or 'RTU'.
PV Addr	The parameter to set Communication Address for controller. The setting range is 1 ~ 99 Pcs Address. its initial setting is '1'.
PV - P.L. ā	The parameter to set Communication Response Time. The RP.TM is a Waiting Time to return upper device after processing received commands when controller received it from upper device. The setting of RP.TM is setting by 10 msec times. In case of RP.TM = 0, If the processing of commands is over, it returns response to upper device.

Sym	Parameter	Setting Range	Unit	Initial	Remark
COM.P	Communication Protocol	PCC0, PCC1, MODBUS ASCII, MODBUS RTU	ABS	PCC0	Option
BAUD	Baud Rate	600, 1200, 2400, 4800, 9600, 19200	ABS	9600	Option
PRTY	Parity	None, Even, Odd	ABS	None	Option
SBIT	Stop Bit	1, 2	ABS	1	Option
DLEN	Data Length	7, 8(SKIP when MODBUS)	ABS	8	Option
ADDR	Address	1 \sim 99(Max 31 can connect)	ABS	1	Option
RP.TM	Response Time	0 ~ 10(×10ms)	ABS	0	Option

6. Display Error and Correction

Display ERROR	Display ERROR ERROR Contents		
E.SYS	EEPROM, DATA Loss	Ask repair	
E.RJC	RJC SENSOR Failure	Ask repair	
Flash Decimal point of SP	lash Decimal point of SP Communication Failure		
S.OPN	SENSOR Open	SENSOR CHECK	

7.1 Dimension and Panel Cutout

SD590

7.2 How to install Mount

- 1) Cut the mounting panel. (Refer to 7.1 Dimension and Panel Cutout)
- 2) Insert the controller into the panel cutout with the rear terminal board facing ahead.
- 3) Attach the right and left mount and fix it to the panel.(Use driver)

Do not excessively tighten the clamp screws, protecting the controller housing and mount against being damaged.

7.3 Power Cable Specification

Vinyl insulated wire 0.9~2.0mm (Allowed Rating Voltage 300V max)

7.4 Terminal Specification

Use M3.5 screw-compatible crimp-on terminals with insulating sleeve as shown below.

First Turn off the source circuit breaker, check to ensure that the power cable is not conducting electricity using a tester, and then proceed with wiring in the manner.

- Never touch the terminal in the rear panel to prevent electric shock when power is supplied to the controller.
- Be sure to turn off the electric power before wiring.

Bind the wires connected to the controller terminals neatly together in order to prevent electromagnetic wave radiation.

7.5 Terminal Arrangement and External wiring

SD590

SD560

7.6 Grounding and Power Cable Connection.

- Use a thick grounding cable (2 m^d or thicker and shorter than 20m) for class-3 grounding or higher (grounding resistance : 100 Ω below)
- Be sure to ground from the grounding terminal to an independent grounding point(1 point grounding)
- Use Vinyl insulation wire 0.9~2.0mm² (Allowed Rating Voltage 300V max) or higher leveled cable for power cable connection.

To prevent electric shock, be sure to turn off the controller and the source circuit breaker before wiring.

- Be sure to connect to correct polarities, Connecting to a wrong polarity may cause unexpected malfunction.
- Use shielded wires and ground the shielding to an independent grounding point.
- Keep the input circuit wiring as far as possible away from the power and ground circuit.
- Use a wire having a low conductor resistance and no three-wire resistance differential.

7.7 ANALOG INPUT Connection.

(1) RTD Input.

(2) DC VOLTAGE Input.

(3) DC CURRENT Input.

7.9 Loop Power Supply Output Connection(LPS)

7.10 External Contact Output Connection(RELAY)

To protect electric shock, be sure to turn off the Nova controller and the source circuit breaker before wiring

CAUTION

7.11 External Contact Input Connection(DI)

- Use a no-voltage contact such as relay contact.
- It has an ample switching capacity for the terminal's OFF voltage (approx. 5V)
- and On current (approx. 1mA)
- When using Open Collector(TR), use one with 2V or lower voltage when the contact is ON and 100^{µA} or less leakage current when it is OFF.

To prevent electric shock, be sure to turn off the Nova controller and the source circuit breaker before wiring

7.12 Use an Auxiliary Relay.

- When using an auxiliary relay or inductance load (L) such as solenoid, be sure to insert a CR filter (for AC) or diode (for DC) in parallel as a surge-suppressor circuit to reject sparks, preventing malfunction or damage.
- Recommended CR filters are as follows.
- Recommended CR FILTER
- Seona Hoo Electronics : BSE104R120 25V (0.1μ+120Ω) : HN2EAC
- ► HANA PARTS CO.
- ► Songmi Eolectic co...Ltd
- : CR UNIT 953, 955 etc
- ► Jiwol Electric Co.,Ltd
- : SKV, SKVB etc
- ▶ Shinyoug Communications Co.,Ltd : CR-CFS, CR-U etc

If inductance load is over as per the controller specifications, it is needed to set frequent On/Off relay operations.

(1) In case of DC RELAY

7.13 Communication Wiring (RS485)

- Up to 31 slave controllers(Nova series instruments equipped with communication option) can be multidrop-connected.
- Be sure to connect terminating resistors(220Ω, 1/4W) to slave and master controllers at communication-channel ends as shown above.

To prevent electric shock, be sure to turn off the NOVA controller and source circuit breaker before wiring.

* D-Register

NO. 0 100 200 300 400 500	600
0	
1 NPV ALT1	IN-T
2 ALT2	INT-U
3 ALT3	IN.RH
4	IN.RL
5	IN.DP
6 AL-1	IN.SH
7 AL-2	IN.SL
8 AL-3	IN.FL
9	BSL
	RSL
A1DB	BSP1
12 A2DB	BSP2
A3DB	BSP3
14 ALSIS	D.FL
	BSU BS1
	BS2
	BS3
19 FBBOB	BS4
20	
21 AL1.H	
22 PV.LO AL2.H	
23 PV.HI AL3.H	
24	
25	
26 AL1.L	
27 AL2.L	
28 AL3.L	
29	
30	
31	
43	

	PROCESS	FUNCTION	SET POINT	SIGNAL	ALARM	PID	IN/OUT
	0	100	200	300	400	500	600
44							
45							
46							
47							
48							
49							
50							
51							RET
52							RETH
53	U						RETL
54	S						
55	е						
56	r						
57							
58	A						
59	r						
60	е						
61	а						COM.P
62							BAUD
63							PRTY
64							SBIT
65							DLEN
66							ADDR
67							RP.TM
68							
69							
70							
71							
72							
73							
74							
75							
70							
78							
70							
80							
81							
82							
83							
84							
85							
86							
87							

NO.	PROCESS	FUNCTION	SET POINT	SIGNAL	ALARM	PID	IN/OUT
	0	100	200	300	400	500	600
88							
89							
90							
91							
92							
93							
94							
95							
96							
97							
98							
99							

(* Thick line : Read Only)

SAMWON TECHNOLOGY CO., LTD.

202-703, Buchon Techno-park, Yakdae-dong, Wonmi-gu, Buchon, Gyeonggi-do, Korea 420-733 TEL: +82-32-326-9120, 9121 FAX: +82-32-326-9119 http:// www.samwontech.com E-mail: webmaster@samwontech.com Further information contact Samwon technology

The contents of this document are subject to change without prior notice. All Rights Reserved. Copyright © 2003 Samwon technology Co., Ltd. Printed in Korea: Apr. 2004(A)